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Change-point estimation is as an effective method for identifying
the time of a change in production and service processes. In most
of the statistical quality control literature, it is usually assumed
that the quality characteristic of interest is independently and
identically distributed over time. It is obvious that this assumption
could be easily violated in practice. In this paper, we use
maximum likelihood estimation method to estimate when a step
change occurs in a high-yield process by allowing a serial
correlation between observations. Monte Carlo simulation is used
as a vehicle to evaluate the performance of the proposed method.
Results indicate satisfactory performance for the proposed

method.

© 2017 IUST Publication, 1JIEPR. Vol. 28, No. 4, All Rights Reserved

1. Introduction
The problem of change-point estimation of high-
yield processes was studied first by Noorossana
et al. (2009) where a maximum likelihood
estimator (MLE) for a step-change point in the
process fraction non-conforming was propose.
Zandi et al. (2011) introduced a model for
change-point estimation of the process fraction
non-conforming with a linear trend and applied a
maximum likelihood estimator when a linear
trend disturbance was present. Then, Monte Carlo
simulation was applied in order to evaluate the
accuracy and precision of the proposed change-
point estimator. Next, the proposed estimator was
compared to the maximum likelihood estimator
of the change-point of process fraction non-
conforming derived under simple-step and
monotonic changes following signals from a
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Shewhart np control chart. Noorossana et al.
(2012) compared the performance of the
maximum likelihood estimator and those of built-
in change-point estimators of cumulative sum
(CUSUM) and exponential weighted moving
average (EWMA) control charts. They proposed
a confidence set for the change point. The results
of a Monte-Carlo simulation show the superiority
of the MLE in identifying the real time of the
change. Niaki and Khedmati (2013) proposed a
maximum likelihood estimator for the change
point in a high-yield process when a linear trend
disturbance occurs in the proportion of process
nonconformity. The performance of the proposed
change-point estimator in terms of both accuracy
and precision is compared to that of the MLE of
the change-point designed for step changes. Niaki
and Khedmati (2014) proposed a maximum
likelihood estimator of a change point in high-
yield processes while assuming that the change
belonged to a family of monotonic changes.
Following a signal from the cumulative count of
conforming (CCC) control chart, the performance
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of the proposed monotonic change-point
estimator was evaluated by comparing its
performance to the ones designed for step-
changes and linear-trend disturbances through
extensive simulation experiments involving
different single step-changes, linear-trend
disturbances, and multiple-step changes.

In Section 2, the effect of correlation in high-
yield process is discussed. Section 3 describes
change-point estimation of high-yield process
with single-step change. Section 4 provides a
maximum likelihood estimation method when a
step change occurs. Some numerical results are
presented in Section 5. The proposed model’s
performance is evaluated in Section 6, and
conclusions are provided in the final section.

2. Effect of Correlation on The High-
Yield Process

Madsen (1993) considered several generalized
binomial models, one of which is referred to as
the correlation model. The key feature of this
model is the allowance of a serial correlation for
Bernoulli trials. For low values of p, i.e., the
fraction nonconforming of the process, the
generalized binomial distribution is approximated
by a generalized Poisson distribution known as a
modified Poisson distribution. Expression for
P(Z,= k), where Z, is the sum of n Bernoulli
random variables defined as follows:
P(Z, = k)

p(l-p)+(A-p)A-p" k=0

n

= a-p()pa-pr*  0<k

pp + (1 —pp" k=
<n-1

1)

where p = 0is the correlation coefficient
between any pair of observations

p= Corr(Xi,X]-), i#] 2)
Madsen (1993) also showed that the methods of
moment estimator for p are as follows:

. [S?=np(1-p)]

P = Dp( - p)]

3

where S2 denotes the sample variance of the
observed data.
Consider a manufacturing process that produces
individual items, each of which is inspected in
the order of production. Let Y denote the total
number of trials to obtain the first non-
conforming item, and Y is conditioned on Xy = 1.
So, we have:

P(Xo=1,X,=0,X,=0,..,X_,=0X; =1)
=1 -pp*L-p'7)
“4)
Now, the probability function of Y is as follows:
PY=i)=PX,=0X,=0,..,X;_1 =0,X;

=1|X,=1)
=PXo=1,X=0,X,=0,..,X;_;, =0,X;
=1)/P(X, =1)
=1-ppA-pPt i=2
%)
For i=1, we have
PY=1)=PX, =1|X,=1)
P(XO = 1,X0 = 1)
T Py =1)
=p+ A —-p)P
(6)

If p = 1, equation (1) tells us that sequence {X;}
is completely dependent; therefore, P(X; =
1|X, = 1) = 1. Hence, equation (5) does make
sense. Combining equations (4) and (5), we have
p+(d—-pp x=1

Pr=x) = {(1 -pp(1=p)*1x=2

(7
It is clear that, when p = 0, equation (1) reduces
to the geometric distribution.

3. Change-Point Identification in
Correlated High-Yield Processes with A
Single-Step Change
Following an unknown point in the time, the
fraction non-conformity level changes and the
process gets out of control. It is assumed that
control chart gives a signal at the time of T,
meaning that observation Xy gets out of control
limits. Given that our goal is to identify change-
point  with  step  change, observations
X1, X5, ..., X; belong to the in-control process
with fraction non-conforming p, , while
observations X;y1,X;42,..., Xy come from the
out-of-control process with fraction non-
conformity level p;. The control chart used for
monitoring the process is geometric chart or g
chart proposed by Benneyan (1991) and
Kaminsky et al. (1992). Control limits of this

chart are defined as follows:

UCL = 1‘7” +k 1;—2’” (8)
CL = 1%” ©)
LCL = 1;7”— 1;—2” (10)
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4. Maximum Likelihood Estimation = r—i
for Correlated Model with A Single-Step Lt ,T-=i+1xj
Change (16)

The proposed estimator for the period when a
step change occurs in nonconformity level is
obtained wusing the maximum likelihood
estimation (MLE) method. When g control chart
signals an out-of control condition, the proposed
method can be applied to determine the period
when the step change occurs in the process
parameter, p, . When value of i(0<i<T)
maximizes the likelihood function, the step
change occurs in this period. Using the following
probability distribution function, we can derive
the estimator for the change point:
p+A-pp x=1
P =0 =10 Ty ez
an

T T
LapI0 =] [a-pp-pyot [ [
j=2 j=t+1
P —p)Y
L(t,pilX) = A= p)" ip™ 11 — o) (1
— )T T (L — py) Bl M
(12)
The logarithm of the likelihood function is as
follows:
LnL(z,p,|X) = (z — DLn(1 — p) + (r — DLn(po)

T
+ ij—‘r+1 Ln(1 —py)
=2

+ (T —)Ln(p,)
+ (T —1)ln(1 — p)
T

+ Z x—T+7 |Ln(1-py)

j=1+1

(13)
The value ofp; that maximizes the likelihood
functionis p;, =T — 1/ ZIT-:TH X;
The maximum likelihood estimate of the change
point T is:
= arg (i

(14)

Therefore,

(1-p1y) ZT 1
. Po _P1,j> ( _Po>
Ly =in| ————< | — xiLn —
' <P1,j(1 — Do) / 1—py;

j=t+1

p, 1-—
+TLn <L> +1Ln ( p")
1—py; Po

+iLn<1:p>+TLn(1—p)
—Ln(1-p)

(15)

5. Numerical Example
Suppose that we have a process operating at
0.0005 non-conformity level; subsequently, the
control limits for the chart can be calculated as
follows:
1-0.0005

UCL = +3 / 1700005 _ 5997 50
0.0005 1-0.00052

LCL — 1-0.0005 _ 3 1—0.00052 — _399950
0.0005 \’ 1-0.0005

CL = 1-0.0005 = 1999
0.0005

Given that the lower control limit is negative, it is
rounded up to zero. Thus, if X; <0 or X; >
7997.50 , the chart signals an out-of-control
condition, indicating a change in the process non-
conformity level. The change-point estimator
proposed herein for the period, when the step
change occurs in the process nonconformity
level, is based on the MLE method. When g
control chart signals an out-of control condition,
the proposed method can be applied to determine
the period when the step change occurs in the
process parameter p, = 0.0005. When the value
of i(0 i < T) maximizes L;, the step change
occurs in that period. We consider the derivation
of MLE for 7; the process change-point period
using the MLE technique was proposed by
Casella and Berger(1990). We consider MLE of
change point tas int (0 <t < T). The value of

7 that maximizes the likelihood function is as
follows:

T

. Po(l_ﬁu)) Z (1_190)
L =iln|———==] - x; Ln ~
' <p1,,~(1 — o) 7\ - Py

j=t+1

h, 1-—
+ TLn( Pj ) + Ln( p")
1—-94 Po

+iLn<1:p)+TLn(1—p)

—Ln(1-p)
D1, =STX;i; is the estimate of process fraction
nonconformity level, and SX; » = X7_;,4 X; is the
sum of inspected units in the periods i+1, i+2, ...
, T .The value of i that maximizes L; is the
estimate of the last period from the in-control
process, and Py ; is its corresponding estimate of
the changed fraction nonconformity level.
Now, using a simple numerical example can
point to the effectiveness of this method. Table
(1) shows the number of inspected items, X;,q,
the values of p, ;, and SX;r fori = 0,1,2,...,29 .
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According to this table, g control chart signals a
change in the process non-conformity level at
period T =30. To determine the period when the
step change occurs, we have to check the above
table for the largest value of L; . The largest value
of L; is equal to period 26, showing that the
change in the nonconformity level has most

likely occurred at this step. It means that estimate
of 1, the period when the step change occurs in
the process nonconformity level, would be T =
26. Therefore, we have to check the records of
the process assigned to a cause that exists around
period 26.

Tab. 1. Change-point estimation

Period i X; SXip = Z}T_:Hlxj pr=T—i/SX;r L

| 0 4449 53062 0.000565 -220.940
2 1 802 48613 0.000597 -219.985
3 2 1059 47811 0.000586 2220.079
4 3 284 46752 0.000578 2220.144
5 4 125 46468 0.000560 2220.253
6 s 1827 45212 0.000553 -220.289
7 6 5988 43385 0.000553 -220.293
8 7 886 37397 0.000615 -219.951
9 8 1507 36511 0.000603 220,051
10 9 1491 35004 0.000600 -220.083
1 10 1316 33513 0.000597 220,116
12 1 1159 32197 0.000590 2220.164
13 12 119 31038 0.000580 2220223
14 13 1658 29844 0.000570 2220273
15 14 9n 28186 0.000568 -220.288
16 15 751 27214 0.000551 2220.343
17 16 913 26463 0.000529 -220.390
18 17 2293 25550 0.000509 2220410
19 18 3192 23257 0.000516 -220.406
20 19 494 20065 0.000548 -220.366
21 20 3063 19571 0.000511 2220.409
2 21 3541 16508 0.000545 2220379
B 2 3 12967 0.000617 2220247
24 23 951 10646 0.000658 220171
25 24 3411 9695 0.000619 -200.284
2% 25 99 6284 0.000796 219.947
27 26 2482 6185 0.000647 -220.290
28 27 1156 3703 0.000810 2220112
29 28 69 2547 0.000785 -220.235
30 29 1854 8856 0.000539 -220.409

Then, we want to generate this case for p = 0.04.
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Tab. 2. Change-point estimation of p = 0.04
T

Period i X; SXir = Z X, P.=T—i/SXir L
j=i+l
1 0 6404 64164 0.000468 -221.526
2 1 1013 57760 0.000502 -221.595
3 2 1299 56747 0.000493 -221.593
4 3 448 55448 0.000487 -221.586
5 4 1522 55000 0.000473 -221.554
6 5 2187 53478 0.000467 -221.538
7 6 5013 51291 0.000468 -221.542
8 7 1106 46278 0.000497 -221.595
9 8 1810 45172 0.000487 -221.588
10 9 1792 43362 0.000484 -221.585
11 10 1590 41570 0.000481 -221.580
12 11 1412 39980 0.000475 -221.571
13 12 1451 38568 0.000467 -221.552
14 13 1987 37117 0.000458 -221.528
15 14 1202 35130 0.000455 -221.524
16 15 957 33928 0.000442 -221.477
17 16 1136 32971 0.000425 -221.398
18 17 2760 31835 0.000408 -221.310
19 18 3989 29075 0.000413 -221.360
20 19 676 25086 0.000438 -221.496
21 20 3798 24410 0.000410 -221.383
22 21 4538 20612 0.000437 -221.509
23 22 2795 16074 0.000498 -221.595
24 23 1178 13279 0.000527 -221.586
25 24 4327 12101 0.000496 -221.595
26 25 250 7774 0.000643 -221.449
27 26 3002 7524 0.000532 -221.588
28 27 1409 4522 0.000663 -221.486
29 28 893 3113 0.000642 -221.538
30 29 2220 2220 0.000450 -221.590

In table(2), to determine the period when the step
change has occurred, we have to check the above
table for the largest value of L; that is equal to
period 18, showing that the change in the
nonconformity level has most likely occurred at
this step. It means that estimate of 1, the period
when the step change occurs in the process
nonconformity level, would be 7T =18
Therefore, we have to check records in the
process for an assignable cause that exists around
period 18. It is noticeable that a correlation is
applied in this case.

6. Performance Evaluation Model
Performance of the proposed estimator for the
period when the step change has occurred in the
nonconformity level is investigated using Monte
Carlo simulation while a correlation exists
throughout the process. Using a geometric
distribution, 100 observations from an in-control
process with p = p, are generated first. If any of
the observations exceeds the control limits, it is
assumed to be a false alarm. We simply replace
this observation with an in-control one. This
procedure is repeated until all 100 observations
are placed between the two control limits. At the

beginning 101 period, a shock is induced to the
process and nonconformity level changes from
Do to p1 = 6p,. Then, observations are generated
until an out-of-control signal is detected. The
point estimate of the period when a change has
occurred, t, which should be close to 100, is
computed. To estimate the expected period, when
the first alarm is given by g control chart, E(T),
the period number whose signal is determined
has to be recorded. This process is repeated
10,000 times for py = 0.0005 and different
values of 8. The mean and standard error of
10000 the estimates of the periods that the step
change has occurred, 7 and Se(%), along with the
estimate of the expected period when the first
alarm is given, E(T) = ARL + t, for different
values of increases (6> 1) and decreases (6 <1) in
the fraction nonconforming is shown in the
following tables. The average run length (ARL) in
the above expression for E(T) refers to the
number of points plotted on the control chart
prior to observing any signal, and it can easily be
obtained by 1, subtracted from E(T) .
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Tab. 3. Average change-point estimates 7 and
standard error py = 0.0005 , T = 100,

Tab. 6. Average change-point estimate of £
and standard error for p, = 0.0005, T =
100, p; <pg,andp =0.1

P1 > Po
Py 0.0006  0.0007  0.0008  0.0009
7 153 124.5 108 101.5
p Se(%) 4.75 4.555 4252 4.12
=0 £ 505.9 481.7 446.5 4322

Tab. 4. Average change-point estimates 7 and
standard error py = 0.0005 , T = 100,

D1 0.0004 0.0003 0.0002

£ 103 102 102

Se(%) 0.791 0.707 0.7071

P=01 B 203.4 2122 214.4

Tab. 7. Average change-point estimates of 7
and standard error for p, = 0.0005, T =
100, p; > po.and p =0.5

P1 <Po
1 0.0004  0.0003  0.0002  0.0001
£ 1115 1045 103 1025

Se(%) 1.417 0.629 0.791 0.745

"o EM 2342 1572 1139 1022

D1 0.0006  0.0007  0.0008  0.0009

7 106 105 103.5 102
p Se(f) 10488  0.9682  0.8366  0.7070
=05 EM 221 219 215.5 2122

Table (3) reveals that a 40% increase in the
fraction nonconformity level p; = 0.0007 and
p = 0 would be detected by g control chart on
average of 381.7 periods after the change has
actually occurred in the process. However, the
MLE provides an average estimate of 124.5 for
the period when the step change occurred in
fraction nonconforming level that is very close to
real change point. The standard error of the
estimates is 4.555, which is small. The results in
Table (3) indicate that the estimates of the period
when the step change has occurred get closer to
the true value as the size of the shift in the
process nonconforming level increases, which is
reasonable enough.

According to Table (4), g control chart signals
57.2 periods on average after the process fraction
nonconforming level drops by 40%, p; =
0.0003 .The change-point estimator performs
relatively well by yielding 104.5 as the average
estimate for the period when the step change has
occurred. The results in Table (4) reveal that the
performance of the MLE improves as the value of
the fraction non-conforming decreases. In other
words, as the deviation from the in-control value
of fraction nonconformity level increases, the
standard error of estimates decreases.

Tab. 5. Average change-point estimate of £
and standard error for p, = 0.0005, T =
100, p; > pgo,and p = 0.1

Tab. 8. Average change point estimate of 7 and
standard error for p, = 0.0005, T = 100,
pP1<pg.andp =0.5

Dy 0.0004 0.0003 0.0002

T 102 101 101

Se(?) 0.7072 0.7071 0.707

P=05 B 208.9 211.1 211.1

Tab. 9. Average change point estimate of 7 and
standard error for p, = 0.0005, T = 100,
P1>Po,andp =0.8

P1 0.0006 ~ 0.0007  0.0008  0.0009

£ 1005 1005 1004 1002
Se(®) 07071 07071 0707  0.706
Zog EM 210 210 2111 210

Tab. 10. Average change point estimate of £
and standard error for po = 0.0005, T =
100, p; < pg,and p =0.8

p1 0.0004 0.0003 0.0002
z 100.5 100.5 100.4

_ Se(?) 0.707 0.707 0.7071
P=08 210 2111 210

P1 0.000 0.000 0.000 0.000
6 7 8 9

0 £ 142 134 1075 106.5
_ 01 Se(®) 2662 2466 1.160 1.087
E(T) 3013 288.1 2254 2232

Table (5) shows that an increase in the fraction
nonconformity level p; = 0.0008 and p = 0.1
would be detected by g control chart of 125.4
periods on average after the change has occurred
in the process. The MLE provides an average
estimate of 107.5 for the period when the step
change has occurred in fraction nonconformity
level that is very close to real change point. The
standard error of the estimates is 1.160 that is
very small. Table (5) indicates that the estimate
for the change-point period in the case of a
correlation is closer to the true value.

Table (6) indicates that g control chart signals
103.4 periods on average after the process
fraction nonconformity level decreases by 40% to
p1 =0.0003 .The change-point estimator
performs relatively well by yielding 103 as the
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average estimate for the period when the step
change has occurred. The results in Table (6)
reveal that the performance of the MLE improves
as the value of the fraction nonconforming
decreases and correlation increases.

Table (7) shows that the increase in the fraction
nonconformity level p; = 0.0007 and p = 0.5
would be detected by g control chart of 119
periods on average after the change has occurred
in the process. The MLE provides an average
estimate of 105 for the period when the step
change has occurred in fraction nonconformity
level that is very close to real change point. The
standard error of the estimates is 0.9682 that is
very small. Table (7) indicates that the estimate
for period when the correlation exists in process
is closer to the true value.

Table (8) indicates that g control chart signals
108.9 periods on average after a decrease in the
process fraction nonconformity level to p; =
0.0004. The change-point estimator performs
relatively well by yielding 102 as the average
estimate for the period when the step change has
occurred. The results in Table (8) reveal that the

performance of the MLE improves as the value of
the fraction nonconforming decreases and
correlation increases.

Table (9) shows that an increase in the fraction
nonconformity level to p; =0.0006 and
p = 0.8 would be detected by g control chart
110 periods on average after the change has
occurred in the process. The MLE provides an
average estimate of 100.5 for the period when the
step change has occurred in fraction
nonconformity level that is very close to real
change point. The standard error of the estimates
is 0.7071 which is very small. Table (9) indicates
that the estimates for the period with the
correlation in process when the step change
occurred gets closer to the true value.

We now consider the frequency with which the
change point estimate is within m periods of the
true change point for m=1, 2, 3, 4, 5, 10, 15, 20,
25, 30, and 40. The results derived from the same
simulation study for the increase and decrease in
the process fraction nonconformity levels are
given in Tables (11) and (12).

Tab. 11. Precision of the estimator: po = 0.0005, T = 100, p;1 > pg

Dy 0.0006 0.0007 0.0008 0.0009
Px=1) 0.0110 0.04136 0.062369 0.014587

P(z—11<1) 0.011069 0.062836 0.064681 0.016435

(It -1 <2) 0.022139 0.085671 0.067362 0.032871

(-1 <3) 0.033208 0.148507 0.069043 0.049306

p=0 Pt -1 < 4) 0.044278 0.151343 0.071724 0.065741
P(lt—1] <5) 0.055347 0.164178 0.073405 0.082177

P(1t - 1] < 10) 0.110694 0.178358 0.146812 0.164355

P(1z—1| < 15) 0.166043 0.192538 0.22022 0.246537

P2 -7 < 20) 0.221393 0.256722 0.293633 0.328724

Pz -1 < 25) 0.276745 0.320908 0.36705 0.410917

Pz — 7| < 30) 0.332099 0.385098 0.440472 0.493119

P(I2 — 7| < 40) 0.442818 0.513493 0.58734 0.657554

Tab. 12. Precision of the estimator: pg = 0.0005, T = 100, p; < pg

Dy 0.0004 0.0003 0.0002
PG=1 0.0106 0.08236 0.147565

Pt—-tl<1) 0.02653 0.158157 0.156753

P(t—-11<2) 0.03305 0.116313 0.195941
P(t—-1<3) 0.04958 0.17447 0.232627

p=0 P(t—11<4) 0.05061 0.290783 0.391883
P(t—1|<5) 0.07263 0.36519 0.498623

P(t -1l <10) 0.1238 0.37896 0.581567

P(t—1] < 15) 0.2042 0.41582 0.587825

P(t—1| <20) 0.3304 0.56231 0.783767

P(|t — 1] £25) 0.4700 0/65478 0.872352

P(t—1| <30) 0.5055 0.78952 0.979711

Pt — 1] < 40) 0.5379 0.89552 0.986325

Table (3) shows that, for a 40% increase in the
fraction nonconformity level p; = 0.0007, the
control chart yields an ARL of 481.7. According

to Table (11), the proposed MLE estimates the
true change point 4.1% of the times correctly.
The change point is estimated 16.41% of the
times within five periods of the process change
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point. Similarly, for a 60% increase in the
fraction nonconformity level p; = 0.0008, the
control chart yields an ARL of 346.5. For this step
change, the proposed MLE estimates the process
change point 8.2% of the times correctly. The
change point is estimated 22% of the times within
15 periods of the process change point. The
results in Table (11) indicate that the
performance of the estimator improves as the
magnitude of the change increases.

Table (4) indicates that for a 40% decrease in the
process fraction nonconformity level pq =
0.0003 ,the control chart ARL drops to 157.2.
For a step change of this magnitude, according to
Table (12), the true process change point is
estimated 8.2% of the times correctly. For a 60%

nonconformity level, the control chart yields an
ARL of 13.9, and the true process change point is
estimated 14.75% of the times correctly.
Simulation results indicate that the change point
is estimated 49.86% of the times within five
periods of the true process change point.
According to Tables (11) and (12), it can be
shown that with an increase or decrease in the
change magnitude, a closer estimate of the
change point is expected.

We now consider the number of times a change
point estimation is around m periods m=
1,2,3,4,5. The results of the simulations with
different increasing and decreasing in the fraction
nonconforming when correlation is present are
shown in the following tables.

decrease pq =0.0002 in the fraction
Tab. 13. Precision of the estimator: p, = 0.0005, T = 100, p; > po, p =0.1
p1 0.0006 0.0007 0.0008 0.0009

P(i=1v) 0.246 0.330 0.497 0.537

P(lt—-1|<1) 0.273 0.339 0.509 0.556

P(t—-t/<2) 0312 0.345 0.517 0.599

p=01 P(z—1/<3) 0358 0.486 0.529 0.641

P(t—t|<4) 0466 0.576 0.693 0.712

P(t—1]<5) 0518 0.674 0.788 0.879

Tab. 14. Precision of the estimator:

Po = 0.0005, Tt =100,p1 <pg,p=0.1

Py 0.0004 0.0003 0.0002
PGE=1 0369 0418 0.524
p=0.1 P(lt-7l<1) 0.389 0.433 0.569
P(t-1/<2) 0.426 0.498 0.636
P(z-1/<3) 0.445 0.541 0.754
P(-1/<4) 0.530 0.626 0.366
P(z—1/<5) 0.632 0.799 350.8

Table (5) shows that for a 40% increase in
p1 = 0.0007, the control chart yields an ARL of
113.1. Table (13) shows that the MLE estimates
the true change point correctly 33% of the times.
The change point is estimated 67.4% of the times
within five periods of the process change point.
Similarly, for a 60% increase p; = 0.0008, the
control chart yields an ARL of 112.2. The
proposed MLE estimates the process change point
correctly 49.7% of the times. The change point is
estimated 78.8% of the times within 5 periods of
the process. The results in Table (13) indicate

that the performance of the estimator improves as
the magnitude of the change and correlation
increase.

Table (6) indicates that for p; = 0.0003 ,the
control chart ARL decreases to 112.2. According
to Table (14), the true process change point is
estimated correctly 41.8% of the times. For
p1 = 0.0002, ARL is 114.4 and the true process
change point is estimated correctly 52.4% of the
times. Results indicate that the change point is
estimated correctly 85.3% of the times within
five periods of the true process change point.

Tab. 15. Precision of the estimator: p, = 0.0005, T = 100, p; > pg, p = 0.5

P1 0.0006 0.0007 0.0008 0.0009
P(i=1) 0.456 0.567 0.599 0.634
P(z-1l<1) 0.483 0.578 0.631 0.694
P(t—1/<2) 0.562 0.661 0.694 0.765
p=0.5 P(t-t|<3) 0.678 0.789 0.799 0.879
P(t—1/<4) 0.769 0.881 0.891 0.891
P(z—1| <5) 0.846 0.947 0.976 0.986
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Tab. 16. Precision of the Estimator: po = 0.0005, T = 100, p; < pgy,p = 0.5
P1 0.0004 0.0003 0.0002
PE=1 0.565 0.606 0.619
P(t—-1|<1) 0.670 0.689 0.774
p=0.5 P(t—-1|<2) 0.742 0.787 0.827
P(t—-1|<3) 0.797 0.847 0.870
Pt—-1|<4) 0.838 0.899 0.885
P(lt—1]<5) 0.897 0.982 0.956
process. Table (15) indicates that the

Table (7) shows that for p; = 0.0007, the
control chart yields an ARL of 219. Table (15)
shows that the proposed MLE estimates the true
change point correctly 56.7% of the times. The
change point is estimated 94.7% within five
periods of the process change point. For p; =
0.0008, ARL is 215.5. The proposed MLE
estimates the process change point correctly
59.9% of the times. The change point is estimated
97.6% of the times within 5 periods of the

performance of the estimator improves as the
magnitude of the change and correlation increase.
Table (8) indicates that for p; = 0.0003, the
control chart ARL decreases to 211.1. According
to Table (16), the true process change point is
estimated correctly 60.6% of the times. Results
indicate that the change point is estimated95.6%
of the times within five periods of the true
process change point.

Tab. 17. Precision of the estimator: p, = 0.0005, T = 100, p; > po, p = 0.8

Py 0.0006 0.0007 0.0008 0.0009
Pr=1) 0.971 0.988 0.988 0.988
P(t—-11<1) 0.985 0.989 0.988 0.988
p=08 P(t—-1|<2) 0.988 0.998 0.998 0.998
P(t—-11<3) 1 1 1 1
Pt—1|<4) 1 1 1 1

Tab. 18. Precision of the estimator: p, = 0.0005, T = 100, p; < pg, p=0.8

22 0.0004 0.0003 0.0002
PE=1 0.987 0.988 0.988
P(lt—-1]<1) 0.988 0.988 0.998
p=08 Bt -1l <2) 0.999 0.989 0.999
P(t—1]<3) 1 1 1
Pt—1l<4 1 1 1
estimator based on MLE method when

Tables (17) and (18) show that by increasing or
decreasing the amount of change and correlation,
the accurate probability of estimate of the change
point increases. For example, for a 40% increase
in p; = 0.0007, the proposed MLE estimates
the true change point correctly 98.8% of the
times, and 100% times estimated change point is
within 4 periods of the true process change point.
Similarly, for a 40 % reduction in the fraction
nonconforming p; = 0.0003, according to Table
(18) in 98.8% of the times, the change point is
correctly estimated within one period and 100%
of the times within 4 periods of the true change
point.

7. Conclusion
Knowing the real-time change in the process not
only helps process engineers to discover and
eliminate  sources of assignable causes
effectively, but also increases production
efficiency in industry. This paper proposed an

correlation can be present to identify the period
of step change for fraction nonconformity level in
high-yield processes. The performance of the
proposed estimator with different values of
fraction nonconforming level and correlation was
investigated. Results show that the estimator has
a reasonable performance for different levels of
nonconformity.
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